Гіпотеза Ферма — Каталана

Матеріал з Вікіпедії — вільної енциклопедії.
Перейти до навігації Перейти до пошуку

Гіпотеза Ферма Каталана — теоретико-числова гіпотеза, яка узагальнює велику теорему Ферма і гіпотезу Каталана. Вона стверджує, що рівняння

має не більше ніж скінченне число розв'язків з різними трійками значень , де  — взаємно прості натуральні числа, а  — натуральні числа, що задовольняють співвідношенню

Відомі розв'язки

[ред. | ред. код]

На 2014-й рік відомо всього 10 розв'язків цього рівняння:[1]

Розв'язок  — це єдиний розв'язок, у якому одне з дорівнює 1. У цьому полягає гіпотеза Каталана, доведена у 2006 році Михайлеску[en].

Всі розв'язки знайдено для трійок показників рівних .

Часткові результати

[ред. | ред. код]

За теоремою Фальтингса для будь-яких фіксованих натуральних , які задовольняють нерівності , існує не більше ніж скінченне число трійок , що задовольняють рівнянню ,[2][3]:p. 64 але гіпотеза Ферма — Каталана строгіша, оскільки стверджує скінченність числа розв'язків для нескінченної множини трійок .

abc-гіпотеза тягне гіпотезу Ферма — Каталана[1].

Гіпотеза Біла полягає в тому, що всі розв'язки рівняння Ферма — Каталана мають один з показників рівний 2.

Примітки

[ред. | ред. код]
  1. а б Pomerance, Carl (2008), Computational Number Theory, у Gowers, Timothy; Barrow-Green, June; Leader, Imre (ред.), The Princeton Companion to Mathematics, Princeton University Press, с. 361—362, ISBN 978-0-691-11880-2.
  2. Darmon, H.; Granville, A. (1995). On the equations zm = F(x, y) and Axp + Byq = Czr. Bulletin of the London Mathematical Society. 27: 513—43. doi:10.1112/blms/27.6.513.
  3. Elkies, Noam D. (2007). The ABC's of Number Theory (PDF). The Harvard College Mathematics Review. 1 (1). Архів оригіналу (PDF) за 10 березня 2016. Процитовано 12 січня 2021.

Посилання

[ред. | ред. код]
  • Weisstein, Eric W. Fermat-Catalan Conjecture(англ.) на сайті Wolfram MathWorld.

Література

[ред. | ред. код]